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Symmetries, Conservation and Dissipation in
Time-Dependent Contact Systems

Jordi Gaset, Asier Lépez-Gorddn,* and Xavier Rivas

In contact Hamiltonian systems, the so-called dissipated quantities are akin
to conserved quantities in classical Hamiltonian systems. In this article, a
Noether’s theorem for non-autonomous contact Hamiltonian systems is
proved, characterizing a class of symmetries which are in bijection with
dissipated quantities. Other classes of symmetries which preserve (up to a
conformal factor) additional structures, such as the contact form or the
Hamiltonian function, are also studied. Furthermore, making use of the
geometric structures of the extended tangent bundle, additional classes of
symmetries for time-dependent contact Lagrangian systems are introduced.
The results are illustrated with several examples. In particular, the two-body
problem with time-dependent friction is presented, which could be interesting

in celestial mechanics.

1. Introduction

As it is well-known, symplectic geometry is the natural frame-
work for classical mechanical systems. In the last decades, alter-
native geometric structures and their associated dynamics have
been widely studied. In particular, contact geometry has arisen
as a geometric solution to model non-conservative systems,!*®!
as well as some thermodynamical systems,®3] quantum
systems,'¥ nonholonomic systems,!'! electromagnetism,*®]
gravitation,!'”] Lie systems,!*®! control theory,'! dissipative field
theories,!”2°21l and so on.

When a classical mechanical system exhibits explicit
time dependence, i.e., it is non-autonomous, its underlying
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geometric structure can be taken either
as a contact structure or as a cosymplec-
tic structure.[??] Recently, the so-called co-
contact geometry,2*?4] a suitable geomet-
ric structure describing non-autonomous
dissipative systems, combining contact
and cosymplectic geometry, has been in-
troduced.

The study of symmetries of mechan-
ical systems is of great interest since it
provides a way of finding conserved (or
dissipated) quantities. Moreover, reduc-
tion procedures can be used in order to
simplify the description of a dynamical
system whose group of symmetries is
known. The relation between symmetries
and conserved quantities has been a topic
of great interest in mathematical physics since the seminal work
by Emmy Noether(?! (see alsol26%7]). Since the dawn of geometric
mechanics, numerous papers have been devoted to the geometric
study of symmetries and conserved quantities for Hamiltonian
and Lagrangian systems.[?*~*] However, in the case of contact (or
cocontact) systems, it is more natural to consider the so-called
dissipated quantities and their associated symmetries.[*7]

Some notions of symmetries for autonomous contact Hamil-
tonian and Lagrangian systems were independently introduced
inl® and.*l The study of symmetries and conserved (or dissi-
pated) quantities is also related with Hamilton—Jacobi theory.
A first Hamilton—Jacobi equation for autonomous contact sys-
tems was obtained in,[??! and an alternative one was obtained
in.[*l The Hamilton—Jacobi theory for non-autonomous contact
systems has been recently done in.[*’] Canonical and canonoid
transformations!*8l and Lie integrability!*! of (co)contact systems
have also been studied.

As a matter of fact, when a (co)contact Lagrangian system
exhibits a cyclic coordinate, the associated quantity is no longer
conserved but dissipated. In>® the symmetries and dissipated
quantities of time-dependent contact systems were studied. Their
results are restricted to the so-called extended contact phase
space, i.e., the extended cotangent bundle T*Q X R x R endowed
with a contact form defined by the canonical contact form of
T*Q x R and the Hamiltonian function of the system. Among
the advantages of the cocontact formalism it is the fact that one
can consider more general manifolds. Moreover, R X T*Q X R is
endowed with a canonical cocontact structure, independent of the
Hamiltonian function.

In the present article, the symmetries of time-dependent
contact Hamiltonian and Lagrangian systems are studied and
classified. A characterization of dissipated quantities and their
relation with symmetries is also provided. Firstly, the most

© 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH


http://www.fp-journal.org
mailto:asier.lopez@icmat.es
https://doi.org/10.1002/prop.202300048
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fprop.202300048&domain=pdf&date_stamp=2023-05-25

ADVANCED
SCIENCE NEWS

Fortschritte
der Physik

Progress
of Physics

www.advancedsciencenews.com

general type of symmetries with associated dissipated quantities,
the so-called generalized infinitesimal dynamical symmetries,
are studied. Secondly, other types of transformations which
preserve additional geometric or dynamical structures are
discussed, exploring the relations between them.

After that, we consider symmetries of time-dependent contact
Lagrangian systems which also preserve the geometric structures
of the extended tangent bundle. Finally, we study three exam-
ples in detail: the free particle with time-dependent mass and lin-
ear dissipation, the action-dependent central potential with time-
dependent mass, and the two-body problem with time-dependent
friction. The latter may have interesting applications in celes-
tial mechanics, allowing to describe the motion of planets with
damping provoked by the medium.

In particular, all our results can be applied to time-independent
contact Hamiltonian and Lagrangian systems. We review and ex-
tend the results from the literature regarding symmetries in au-
tonomous contact systems.[84] Hence, this article may also be
used as a reference for the reader interested in the symmetries
of contact Hamiltonian and Lagrangian systems (even if they do
not have an explicit time-dependence).

1.1. New Results and Relation to Literature

This article is, to the best of our knowledge, the first refer-
ence studying the symmetries of cocontact Hamiltonian and La-
grangian systems. Cocontact geometry was introduced inl?! in
order to provide a geometric framework for action and time de-
pendent systems, combining features of contact and cosymplec-
tic geometry. Furthermore, the present paper may also be used as
a reference for the classification of symmetries of autonomous
contact Hamiltonian and Lagrangian systems, the relations be-
tween them and their associated conserved and dissipated quan-
tities. Several notions of symmetries that we consider had already
been studied for the time-independent case in the literature:

® Generalized infinitesimal dynamical symmetries were intro-
duced in,*] where they were called “dynamical symmetries”.

¢ (Infinitesimal) dynamical symmetries were introduced in.[®3]

® (Infinitesimal) conformal Hamiltonian symmetries are called
(infinitesimal) conformal symmetries in.[*]

® (Infinitesimal) strict Hamiltonian symmetries were called (in-
finitesimal) contact symmetries in®! and (infinitesimal) strict
symmetries in.[*]

e Cartan symmetries were introduced in.!

o Infinitesimal generalized natural symmetries of the La-
grangian L are called generalized infinitesimal symmetries of
Lin.[*]

® Infinitesimal natural symmetries of the Lagrangian L are
called infinitesimal symmetries of L in.[**] These symmetries
were also studied in.[®]

® Infinitesimal action symmetries are called action symmetries
in.[l This kind of transformations are employed inl*!! to gen-
erate equivalent Lagrangians.

45]

Some relations of these symmetries with dissipated quantities
were also studied in the aforementioned papers. Nevertheless,
there was a lack in the literature of a systematic classification of
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symmetries considering the structures they preserve and the re-
lations between them (see Figures 1, 2 and 3).

1.2. Structure of the Article

In Section 2, the most important aspects of cocontact geome-
try are reviewed. Section 3 is devoted to the study of symme-
tries and dissipated quantities of time-dependent contact Hamil-
tonian systems. The symmetries and dissipated quantities of
time-dependent contact Lagrangian systems are discussed in Sec-
tion 4. Some examples are studied in Section 5. Finally, Section 6
provides some conclusions and topics for future research.

1.3. Notation and Conventions

Throughout the article all the manifolds and mappings are as-
sumed to be smooth, connected and second-countable. Sum over
crossed repeated indices is understood. Given a Cartesian prod-
uct of manifolds M; x M,, the natural projections will be denoted
by pr; : M; X M, - M, and pr, : M; X M, —» M,, and similarly
for a product of k manifolds M; X M, X -+ X M.

2. Review on Cocontact Mechanics

In this section the main tools of cocontact geometry are pre-
sented. This geometric framework is used to develop a geomet-
ric formulation of time-dependent contact systems both in the
Hamiltonian and the Lagrangian formalisms. Seel?*! for details.

2.1. Contact and Jacobi Geometry

First, let us briefly recall the basic notions of contact and Jacobi
manifolds that will be employed. For more details see.>523]

Definition 2.1. A Jacobi manifold (M, A, E) is a triple where M is a
manifold, A is a bivector field and E is a vector field on M such that

[AE]=0, [AA]=2EAA, (2.1)

where |-, -] denotes the Schouten—Nijenhuis bracket. The pair (A, E)
is called a Jacobi structure on M.

The Jacobi bracket isthe map {-, -} : €% (M) X €°(M) - €<(M)
given by

{f g} = A(df. dg) + fE(g) — gE(f)- (2.2)

This bracket is bilinear and satisfies the Jacobi identity. How-
ever, unlike Poisson brackets, in general Jacobi brackets do not
satisfy the Leibniz rule.

Definition 2.2. A (co-oriented) contact manifold is a pair (M, n)
where M is a (2n + 1)-manifold, and n is a one-form on M such that
7 A (dn)" is a volume form on M. The one-form n is called a contact
form on M.

Given a contact manifold (M, ), one can define an isomor-
phism of € (M)-modules given by

b: (M) 3 X 1,dy + (1xn)n € Q(M).
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T(Y)=0, Zn=pn, m(Y) =0,
Y(H) =pH Lym=pn
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Y(H) = pH + gR.(H)

Figure 1. Classification of infinitesimal symmetries and relations between them. Infinitesimal dynamical symmetries, infinitesimal conformal Hamilto-
nian symmetries and infinitesimal strict Hamiltonian symmetries close Lie algebras, whereas Cartan symmetries and generalized infinitesimal dynamical

symmetries do not close Lie algebras.

(eeeeeeieiens

T )
Infinitesimal symmetries
of the Lagrangian
Lyt =0,

HL=0

N

J

Figure 2. Classification of infinitesimal Lagrangian symmetries and relations between them. Infinitesimal symmetries of the Lagrangian, infinitesimal
natural symmetries of the Lagrangian and infinitesimal extended natural symmetries of the Lagrangian close Lie subalgebras.

Every contact manifold has a unique Reeb vector field R, given by
R =b71(n). Moreover, to each function f € €*(M) one can as-
sociate a (contact) Hamiltonian vector field X; given by b(X;) =
df — (Rf +fn.

Additionally, given a contact manifold (M, #), around every
point p € M there exist local coordinates (q', p;, z) such that

; 0
=dz-pdg, R=—
n=dz-pdq, o0z’

0 ) 9 )
X}Z—fi— i+pii i+ pi_f_ i
Jp; dq' oq' 0z J dp; op; 0z

These coordinates are called canonical or Darboux coordinates.
A contact Hamiltonian system is a triple (M, n, H), where (M, 1)
is a contact manifold and H € €* (M) is the Hamiltonian func-

Fortschr. Phys. 2023, 71, 2300048 2300048 (3 of 17)

tion. Its dynamics is given by X,;, the Hamiltonian vector field of
H. There is also a Lagrangian formalism for time-independent
contact systems (see [*).

A contact manifold (M,5) has a Jacobi structure (A, E),
where E=—R and the bivector A is given by A(a,p) =
—dn(b~'(a),b=1(p)). The Jacobi bracket {-, -} : €* (M) X €=(M) —
(M) is

{f.g} =—dn(b-'df b~"dg) — fR(g) + gR(f). (2.3)

2.2. Cocontact Geometry

Definition 2.3. A cocontact manifold is a triple (M, T, n) where M
is a (2n + 2)-manifold, and = and n are one-forms on M such that
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Figure 3. Relations between infinitesimal (extended) natural symmetries of the Lagrangian, conformal Hamiltonian symmetries and strict Hamiltonian

symmetries.

dr =0 and 7 Ay A (dn)" is a volume form on M. The pair (z, ) is
called a cocontact structure on M.

Given an n-dimensional smooth manifold Q with coordi-
nates (') and its cotangent bundle T*Q with adapted coordi-
nates (q', p;), consider the product manifolds R x T*Q, T*Q x R
and R x T*Q x R with adapted coordinates (¢, ', p;), (¢, p;, 2) and
(t,4', p;, 2), respectively. The following diagram illustrates this sit-
uation and provides some canonical projections:

RxTQ xR

R x T*Q 7r T"Q xR (2.4

T*Q

Denote by 6 € Q'(R x T*Q X R) the pull-back of the canonical
Liouville one-form of the cotangent bundle by the projection =
given in the diagram above. Hence, (r = dt,n = dz — 6) is a co-
contact structure on the product manifold R x T*Q x R. This ex-
ample, also known as canonical cocontact manifold, is just a par-
ticular case of the following.

Example 2.4. Let (P, ny) be a contact manifold and consider the prod-
uct manifold M = R x P. Denoting by dt the pullback to M of the
volume form in R and denoting by n the pullback of n, to M, we have
that (M, dt, n) is a cocontact manifold.

Given a cocontact manifold (M, 7, ), one can define an isomor-
phism of €*(M)-modules given by

b(X) : (M) D X = (1x7)7 + 1,dyy + (1) € QH(M).

Fortschr. Phys. 2023, 71, 2300048 2300048 (4 of 17)

In addition, every cocontact manifold has two distinguished
vector fields R, and R, characterized by the conditions

pr=1, 1R21=0,
pn=1,

szdr] =0,

1
=0,

or equivalently, R, = b~!(r) and R, = b~!(y). The vector fields R,
and R, are called time and contact Reeb vector fields, respectively.

A cocontact manifold (M, r,#) is a Jacobi manifold (M, A, E),
where E=—-R, and the bivector A is given by A(a,f)=
—dn(b~Y(@),b~1(B)). The Jacobi bracket {-, -} : €= (M) X €=(M) —
&= (M) is

{f.g} = —dn(b-'df b~'dg) — fR,(g) + gR.(f) - (2.5)

Moreover, given a cocontact manifold (M, 7, #), around every
point p € M there exists a local chart (U; ¢, ¢', p;, 2) of canonical or
Darboux coordinates such that

tly=dt, nl,=dz-pdqd, R

-9
Ut

2.3. Hamiltonian Formalism

Definition 2.5. A cocontact Hamiltonian system is tuple (M, 7, n, H),
where (M, T, n) is a cocontact manifold and H € €* (M) is a Hamil-
tonian function. The cocontact Hamiltonian equations for a curve
w:ICR— Mare

1,,dn = (dH — R (H)n — R,(H)7) oy,

,,W=—-Hoy, 1,7=1,

(2.6)
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where ' : I C R — TM is the canonical lift of the curve y to the
tangent bundle TM. The cocontact Hamiltonian equations for a vector
field X € X(M) are

iydy =dH-R,(Hyp—-R(H)r, iwn=-H, irt=1, (2.7)
which can also be written as b(X)=dH— (R,H+ H)n+ (1 -
R,H)zt or

Zvn=—-R,(Hn—-R(H)r, ixn=-H, ir=1. (2.8)

These equations have a unique solution called the cocontact Hamilto-
nian vector field X = X;.

Given a curve y : I C R - M with local expression w(r) =
(f(r), ¢(r), p:(r), z(r)), the third equation in (2.6) imposes that
f(r) = r+ ¢ for some constant c, thus we will denote r = t, while
the other equations read

Lo E
- oap; ’
, OH OH
p=—(Z+p2). 2.9)
. oH
z=pid—pi - H

On the other hand, the local expression of the cocontact Hamil-
tonian vector field in Darboux coordinates is

_9,0Ho (oH_oH\a  (,0H ,\a
"ot opog \og Pioz )op T \Piop, oz

Note that the integral curves of this vector field satisfy the system
of differential equations (2.9).

2.4. Lagrangian Formalism

Given a smooth n-dimensional manifold Q, consider the prod-
uct manifold R X TQ X R equipped with adapted coordinates
(t,q', v, z). We have the canonical projections

7, :RXTOXR >R, 71t v, 2) =8,

7, : RXTQXR ->TQ, (v, 2) = v,

7; :RXTQXR - R, 73(t vy, 2) = 2,
Tyt RXTOXR >RXQXR, 7ot vy, 2) = (5.9, 2),

which are summarized in the following diagram:

RxTQ xR
ln
- ol TQ 73
(2.10)
R+  RxQxR——2% 4R

Przl
TQ

Q

Fortschr. Phys. 2023, 71, 2300048 2300048 (5 of 17)
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The usual geometric structures of the tangent bundle can be
naturally extended to the cocontact Lagrangian phase space R x
TQ x R. In particular, the vertical endomorphism of T(TQ) yields
avertical endomorphism S : TR X TQ X R) - T(R X TQ X R). In
the same way, the Liouville vector field on the fiber bundle TQ
gives a Liouville vector field A € (R x TQ x R). The local expres-
sions of these objects in Darboux coordinates are

0 i i 0
S=2®df, A=V (2.11)

Given a path ¢: R - R x Q X R with ¢ = (¢}, ¢,, ¢5), the pro-
longation of ¢ to RXTQ xR is the path €= (¢}, ¢}, ¢;) : R —
R x TQ x R, where c} is the velocity of c,. Every path € which is
the prolongation of a path ¢ : R — R X Q X R is called holonomic.
Avector fieldT" € 2(R x TQ X R) satisfies the second-order condi-
tion (it is a sopE) if all of its integral curves are holonomic.

The vector fields satisfying the second-order condition can be
characterized by means of the canonical structures A and S in-
troduced above, since X is a sopE if and only if S(I') = A.

A Lagrangian function is a function L € €°(R X TQ x R). The
Lagrangian energy associated to L is the function E; = A(L) — L.
The Cartan forms associated to L are

0, ='SodLe Q' (RXTQ xR),
o, =—-d, € Q*(RxTQ xR), (2.12)

where 'S denotes the transpose operator of the vertical endomor-
phism. The contact Lagrangian form is

n=dz-0, e Q' RXxTQXR).

Notice that dy; = w;. The couple (R X TQ X R, L) is a cocontact
Lagrangian system. The local expressions of these objects are

;0L oL
E, =v— -1, =dz- —dq,
L=v ovt L z oVt 1
2 2 X 2 . .
nL=—a— ' idq’/\ ‘—&dv‘/\dq‘
otov' oq ov' oviov'
2
0 L,dz g
d0zov'

Not all cocontact Lagrangian systems (R X TQ X R, L) resultin
the tuple (R x TQ X R,z = dt, n;, E;) being a cocontact Hamilto-
nian system because the condition 7 A5 A (dn;)" # 0 is not al-
ways fulfilled. The Legendre map characterizes the Lagrangian
functions that will result in cocontact Hamiltonian systems.

Given a Lagrangian function L € € (R x TQ x R), the Legen-
dre map associated to L is its fiber derivative,®! considered as
a function on the vector bundle 7, : RXTQ XR - R X Q X R;
that is, the map FL: RXTQ X R - R X T*Q x R with local ex-
pression

FL(tv,2) = (L FL({t -, 2)(v,), 2)

where FL(t, -, z) is the usual Legendre map associated to the La-
grangian L(t, -, 2) : TQ — R with the variables ¢ and z fixed.

The Cartan forms can also be defined as §, = FL*(z*6,) and
w; = FL*(n*w,), where 6, and w, = —df, are the canonical
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one- and two-forms of the cotangent bundle and 7 is the natu-
ral projection 7 : RXT*Q X R — T*Q.

Proposition 2.6. Given a Lagrangian function L the following state-
ments are equivalent:

1. The Legendre map F L is a local diffeomorphism.

2. Thefiber Hessian F2L: RXTQ XR — (RXT*Q X R) ® (R x
T*Q X R) of L is everywhere non-degenerate (the tensor product is
understood to be of vector bundles over R X Q X R).

3. Thetriple (R X TQ X R, dt, n,) is a cocontact manifold.

A Lagrangian function L is regular if the equivalent statements
in the previous proposition hold. Otherwise L is singular. More-
over, L is hyperregular if FL is a global diffeomorphism. Thus,
every regular cocontact Lagrangian system yields the cocontact
Hamiltonian system (R X TQ X R, dt, ;, E;).

The local expressions of the Reeb vector fields are

PL 9
920l oV

0 d0’L a L _ 0

Rl=— —wi—=  R=Z_Wwi
oot otov ovi Z 0z

, (2.13)

where (W¥) is the inverse of the Hessian matrix of the Lagrangian
L, namely WiW, =4,.

If the Lagrangian L is singular, the Reeb vector fields are not
uniquely determined, actually, they may not even exist.[?}]

2.4.1. The Herglotz—Euler-Lagrange Equations

Definition 2.7. Given a regular cocontact Lagrangian system (R X
TQ X R, L) the Herglotz—Euler—Lagrange equations for a holonomic
cureC: ICR > RXTQ xR are

1(¢)dn, = (dE, — RE(E;)dt — RE(E})n,) o€,
1(€)n, = —E, o, (2.14)
t(?f’)dt =1,

~

where : I C R — T(R X TQ X R) is the canonical lift of  to T(R X
TQ x R). The cocontact Lagrangian equations for a vector field X, €
X(RXTQXR)are

lX,‘d'IL =dE, - RLL(EL)dt - Ri(EL)r]L ,
Ix N = —-E, (2.15)
g, dt=1.

The only vector field solution to these equations is the cocontact La-
grangian vector field.

Equations (2.14) and (2.15) are the Lagrangian counterparts of
Equations (2.6) and (2.7), respectively. The cocontact Lagrangian
vector field of a regular cocontact Lagrangian system (R x TQ x
R, L) coincides with the cocontact Hamiltonian vector field of the
cocontact Hamiltonian system (R X TQ X R, dt, ;, E}).

Theorem 2.8. If L is a regular Lagrangian, then X; =T’} is a SODE,
called the Herglotz—Euler—Lagrange vector field for the Lagrangian L.
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The coordinate expression of the Herglotz—Euler—Lagrange
vector field is

I, = 9 +vii
ot oq

dg  otov agkovi 0zovw 0z v

" 2 2 2
LW %_0L_vk0L L0L+%% 0. th
o' 0z

(2.16)

An integral curve of T'; fulfills the Herglotz—Euler—Lagrange equa-
tions for dissipative systems:

4Ly oL oot
dt\ovi/ oaq oz o’

These equations can also be obtained variationally from the Her-
glotz principlel®® (see alsol**). Roughly speaking, the variable z
can be interpreted as the action of the Lagrangian system.

3. Symmetries and Dissipated Quantities of
Cocontact Hamiltonian Systems

In this section we will study the symmetries of regular time-
dependent contact mechanical systems and their associated con-
served and dissipated quantities. A summary of the symmetries
and their relations can be found in Figure 1. In some cases we will
restrict ourselves to the case of cocontact manifolds of the form
M =R X N where N is a contact manifold (see Example 2.4).
In this case, the natural projection R X N — R defines a global
canonical coordinate ¢ on the cocontact manifold R x N.

Definition 3.1. Let (M, 7,7) be a cocontact manifold. A diffeomor-
phism ® : M — M is called a conformal cocontatomorphism if ®*t =
7 and ®*n = fn for some non-vanishing function f on M called the
conformal factor. A (strict) cocontactomorphism is a conformal cocon-
tactomorphism with conformal factor f = 1.

An infinitesimal conformal (resp. strict) cocontactomorphism is a
vector field Y € X(M) whose flow is a one-parameter group of confor-
mal (resp. strict) cocontactomorphisms.

Proposition 3.2. Let ® : M — M be a cocontactomorphism (i.e.,
®*n = n and ®*t = 7), then © preserves the Reeb vector fields (i.e.,
®.R =R and ® R, =R,).

Proof. Suppose that ® is a cocontactomorphism. We have
{(®]'R,) (@ dn) = @ (1,dn) =0,
H(OR)(@'7) = (1 7) = 1,
H(®]1R,) (@) = & (1,1) = 0.

Since ®*5 = n and ®*r = 7, by the uniqueness of the time Reeb
vector field, we get that ®, R, = R,. Analogously, one can see that
the contact Reeb vector field is also preserved. O

Corollary 3.3. If a vector field Y € X(M) is an infinitesimal cocon-
tactomorphism (i.e., Lyn = Lyt =0), then [V, R,] =[Y, R,] = 0.

It is worth noting that the converse is false.

© 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

85U8017 SUOWIWIOD BA 11810 3|l [dde ay) Aq pausenob ae sapoile VO ‘8sN JO Sa|n. 10} AfeldTauljUQ A1/ UO (SUONIPUCD-pUe-SWeIALI00" A | IMAle.q Ul Uo//Sdny) SUORIPUOD pue SWie 1 8y} 89S *[£202/0T/0T] Uo Afeiqauljuo A81IM ‘U0SIAIG epeueD aueIyo0D Ad 87000€Z02 do.d/Z00T 0T/10p/ioo A8 im Aleq i jpuluo//sdny Wwolj pepeojumod ‘6-8 ‘€202 ‘8.65TZST


http://www.advancedsciencenews.com
http://www.fp-journal.org

ADVANCED
SCIENCE NEWS

Fortschritte
der Physik

Progress
of Physics

www.advancedsciencenews.com

Example 3.4. Consider the cocontact manifold (M, t, n) where M =
R*, 7 = dt and n = dz — pdgq, where (t, g, p, z) are canonical coordi-
nates. Clearly, the vector field Y = 0/0p on M preserves the Reeb vector
fields R, = /0t and R, = 0/0z. However, it is not an infinitesimal
cocontactomorphism. Indeed,

ZLyn =1ydnp = —dq # 0. (3.1)

Similarly, one can check that the map ® : M > M, (t,q,p,2) —
(t.9,2p, 2) is a diffeomorphism preserving the Reeb vector field, but
it is not a cocontactomorphism

3.1. Dissipated and Conserved Quantities of Cocontact Systems

Definition 3.5. Let (M, 7, n, H) be a cocontact Hamiltonian system.
A dissipated quantity is a function f € € (M) such that

Xu(f) = =R.(H)f .

Notice that, unlike in the time-independent contact case, the
Hamiltonian function is not a dissipated quantity. Taking into
account that

Xy(H) = -R,(H)H + R,(H),

it is clear that H is a dissipated quantity if it is time-independent,
namely R,(H) = 0. This resembles the cosymplectic case, where
the Hamiltonian function is conserved if, and only if, it is time-
independent.

Proposition 3.6. Let (M, 7,5, H) be a cocontact Hamiltonian sys-
tem. A function f € €*(M) is a dissipated quantity if and only if
{f H} = R,(f), where {-,-} is the Jacobi bracket associated to the co-
contact structure (t, n).

Proof. The Jacobi bracket of f and H is given by Equation (2.5):

{f H} = —dn (07 df b™'dH) — fR.(H) + HR.(f), (3:2)
but

b7Hdf =X, + (R.(f) +f)R. = (1= R(f))R, (33)
so, taking into account Equations (2.7),

togrdn = 1y dn = df = R.(f)n — R(f)7, 34
and thus

dn(b='df,b"'dH) = X,,(f) + R.(f)H — R,(f) . (3.5)
Hence,

{f H} = =Xy (f) = R.(H)f + Ri(f), (3.6)
S0

{H.f} + R(f) = Xu(f) + R(H)f . 37)

In particular, the right-hand side vanishes if and only if f is a
dissipated quantity. O
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The symmetries that we shall present yield dissipated quanti-
ties. However, we are also interested in finding conserved quan-
tities.

Definition 3.7. A conserved quantity of a cocontact Hamiltonian

system (M, =, n, H) is a function g € €< (M) such that

Xy(g)=0.

Taking into account that every dissipated quantity changes
with the same rate R (H), we have the following result, whose
proof is straightforward.

Proposition 3.8.
(M, 7,n, H). Then

Consider a cocontact Hamiltonian system

(1) if f, and f, are dissipated quantities and f, # 0, then f, /f, is a
conserved quantity,

(2) iff is a dissipated quantity and g is a conserved quantity, then fg
is a dissipated quantity,

(3) iff; and f, are dissipated quantities, a.f, + a,f, is also a dissi-
pated quantity for any a,, a, € R,

(4) if g, and g, are conserved quantities, a,g, + a,g, + a, is also a
conserved quantity for any a,, a,,a; € R.

3.2. Generalized Infinitesimal Dynamical Symmetries

The following result motivates the definition of the most general
type of symmetries with associated dissipated quantities.

Theorem 3.9 (Noether’s theorem). Consider the cocontact Hamilto-
nian system (M, 7,5, H). Let Y € X(M). If n([Y, X;]) = 0 and 1,7 =
0, then f = —iyn is a dissipated quantity. Conversely, given a dissi-
pated quantity f, the vector field Y = X; — R,, where X; is the Hamil-
tonian vector field associated to f, verifies n([Y, X)) = 0, 1y = 0 and
f=-uyn

Proof. Let f = —iyn, where Y satisfies #([¥, X,]) = 0 and i1,z =
0. Then,

Ly f ==Ly, iy = —1yLy 1= x, v = ty(R.(H)n + R(H)7)
= R.(H)iyn = =R.(H)f ,
and thus f is a dissipated quantity.

On the other hand, given a dissipated quantity f, let Y = X, —
R,. Then, it is clear that f = —i,#. In addition, 1,7 = 0, and

U vl = Ly iy — 1ty Ly, n ==Ly f + 1y(R.(H)n + R,(H)7)
(3.8)
= R(H)f - R,(H)iyn =0, (3.9)
where we have used Equations (2.8). O

This result motivates the following definition.

Definition 3.10. Let (M, 7,5, H) be a cocontact Hamiltonian system
and let X, be its cocontact Hamiltonian vector field. A generalized
infinitesimal dynamical symmetry is a vector field Y € X(M) such
that n([Y, X)) = 0 and 1,7 = 0.
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In particular, if H is a time-independent Hamiltonian func-
tion, then H is a dissipated quantity and its associated general-
ized infinitesimal dynamical symmetry is the Hamiltonian vector
field X},.

Theorems 3 and 4 of1*°) are the analogous of Theorem 3.9 in
the extended contact phase space (instead of the cocontact) for-
malism.

Remark 3.11. Despite the condition 7(Y) =0, the dissipated
quantity associated to a generalized infinitesimal dynamical sym-
metry Y may be time-dependent. Indeed,

EZRf = —ZLpiyll = =iy — Iy Lr N
oY= aY?
= (R, Y]) = -5 + p, S, 3.10
1R YY) = -5 +p (3.10)

where Y = Y90/dq’ + Y"0/0v' + Y?0/0z.

3.3. Other Symmetries

We are now interested in other types of symmetries which pre-
serve more properties of the system, such as the dynamical vector
field or the Hamiltonian function.

Definition 3.12. Let (M, 7, n, H) be a cocontact Hamiltonian system
and let X, be its cocontact Hamiltonian vector field.

(1) If M =R x N with N a contact manifold, a dynamical symme-
try is a diffeomorphism ® : M — M such that ®,X,; = X, and
Ot =1t.

(2) Aninfinitesimal dynamical symmetry is a vector field Y € X(M)
such that £y X, =Y, Xy] =0 and 1y7 = 0. In particular, if
M =R X N, the flow of Y is made of dynamical symmetries.

Generalized infinitesimal dynamical symmetries receive that
name since they satisfy weaker conditions than infinitesimal dy-
namical symmetries. It is clear that every infinitesimal dynamical
symmetry is a generalized infinitesimal dynamical symmetry. We
also define a generalization of dynamical symmetries as follows:

Definition 3.13. Let (M, 7, n, H) be a cocontact Hamiltonian sys-
tem, where M = R X N with N a contact manifold, and let X, be its
cocontact Hamiltonian vector field. A generalized dynamical symme-
try is a diffeomorphism ® : M — M such that n(®,X,;) = n(Xy) and
Ot =1.

Unlike other symmetries with infinitesimal counterparts, the
flow of a generalized infinitesimal dynamical symmetry is not
necessarily made of generalized dynamical symmetries.

Example 3.14. Consider the cocontact Hamiltonian system (R*\
{0}, 7,5, H), with r = dt, = dz — pdx and

H=—+2z,

2
where (t,x, p, z) are the canonical coordinates in R*. The family of
diffeomorphisms

@ : R*\ {0} > R*\ {0}
(3.11)
(t,x,p,2) > (Lx,p+12)
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forr € R, is generated by the vector field Y = 0%. One can check that

Y is a generalized infinitesimal dynamical symmetry, but ®" is not a
generalized dynamical symmetry for r # 0. Indeed, for

) ) ) P 0
Xy=—tp— —p—+ = -2 )=, 3.12
HE 5 T Pox TPy <2 Z)az (3-12)
we have

. P 0 0 -1’ F)
¢*XH=0_t+(p_r)d_x_(p_r)0_p+< 3 -z a;éXH,

(3.13)

and n(®' X)) # n(Xy).

The (infinitesimal) dynamical symmetries defined above are
the counterparts of (infinitesimal) dynamical symmetries in sym-
plectic Hamiltonian systems (seel**’] and references therein).
They are of interest since they map trajectories of the system onto
other trajectories. As a matter of fact, if 6 : R — M is an integral
curve of X;; and ® is a dynamical symmetry, then ® o o is also an
integral curve of Xj;. In addition, we have the following result.

Proposition 3.15. Infinitesimal dynamical symmetries close a Lie
subalgebra of (X(M), [+, -]). In other words, given two infinitesimal dy-
namical symmetries Y,, Y, € X(M), its Lie bracket [Y,, Y,] is also an
infinitesimal dynamical symmetry.

Moreover, dynamical symmetries form a Lie subgroup of Diff (M),
that is, for any pair of dynamical symmetries @, and ®,, the compo-
sition @, o @, is also a dynamical symmetry.

Proof. Using the Jacobi identity,
[y, Yol Xyl = [Yy, Xy, Y]] + [V, [Y,, X)) = 0.
In addition,
Uy, 1T = Ly by, T — 1y, Ly, T = —ly, (IY] dr + dlylr) =0.

On the other hand, if ®, and @, are dynamical symmetries,
then

(@1 0D;). Xy = (P1). (). Xy = (P1). Xy = Xy,

and (@, o ®,)"t = ®;@;t = @t = t. Obviously, ® =id is a dy-
namical symmetry. Finally, if @ is a dynamical symmetry, then

Xy = (@ od), X, = CDjCD*XH = <I>*_1XH ,
and similarly (®~!)*t = t. This proves that dynamical symmetries
form a group under composition. O

Generalized infinitesimal dynamical symmetries do not close
a Lie algebra, as the counterexample below shows.

Example 3.16. Consider the cocontact Hamiltonian system from Ex-
ample 3.14.
Given the vector fields

d x 0
ap 2 0%
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one can check that Y is a generalized infinitesimal dynamical sym-
metry and Z is an infinitesimal dynamical symmetry. Nevertheless,

10 0
vzj=-2 4+ 2
e 26p+0z

is not a generalized infinitesimal symmetry.

A natural type of objects that conserve the geometry of the
system are the (infinitesimal) f-conformal cocontactomorphisms
(see Definition 3.1). Since the function H is independent of the
cocontact structure (z, 1), in general f-conformal cocontactomor-
phisms are not generalized dynamical symmetries. The neces-
sary and sufficient condition is shown in the next result.

Proposition 3.17. Let (M, 7,n, H) be a cocontact Hamiltonian sys-
tem.

(1) Let ® : M — M be an f-conformal cocontactomorphism of the
cocontact manifold (M, z,n), namely ®*n = fn and ®*7 = 7.
Then, n(®,X},) = n(Xy) if, and only if, ®*H = fH. Moreover,
for a cocontact Hamiltonian system of the form presented in Def-
inition 3.13, @ is a generalized dynamical symmetry if, and only
if, ®*'H = fH and ®*t = .

(2) Let Y € X(M) be an infinitesimal g-conformal cocontactomor-
phism of the cocontact manifold (M, z,n), namely Lyn = gn
and £yt = 0. Then, n([Y, X)) = 0if, and only if, #,H = gH.
In particular, Y is a generalized infinitesimal dynamical symme-
try if, and only if, £, H = gH and 1,7 = 0.

Proof. If X,, is the solution of the cocontact Hamiltonian sys-
tem (M, 7,7, H), we have that 1, n = —H, so
O H = -0 (15 1) = —1g x, Pn = —flq,*XHﬂ.

If @ is a generalized dynamical symmetry, then 14,y 7 =15 7,
and therefore ®*H = fH. Conversely, if ®*H = fH, then

f’q,xHﬂ =-®"H=-fH =f’XH’7-

Since f # 0 everywhere, we conclude that 14 y 17 =15 7.
The infinitesimal case is proved with a similar argument using
the relation

ZyH = _gy(lx,, n) = —lyx, M~ Ix, Zyn
= —lyx, M — 8hx, M = —hyx, M+ gH . O
This result justifies the following definition.

Definition 3.18. Let (M, t,n, H) be a cocontact Hamiltonian sys-
tem.

(1) A f-conformal Hamiltonian symmetry is a diffeomorphism @ :
M — M such that

dt=t, On=fn, P®H=fH,

where f € €= (M) does not vanish anywhere, M = R X N with
(N, n) a contact manifold, and t is the canonical coordinate of R.
If @ is a cocontactomorphism (i.e., if f = 1), we say that ® is a
strict Hamiltonian symmetry.
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(2) Aninfinitesimal p-conformal Hamiltonian symmetry is a vector
field Y € (M) such that

yt=0, Zn=pn, ZyH=pH,

where p € €*(M). In particular, if M = R x N, the flow of Y
is made of conformal Hamiltonian symmetries. If Y is an in-
finitesimal cocontactomorphism (i.e., if p=0), Y is said to be
an infinitesimal strict Hamiltonian symmetry.

These symmetries correspond, in time-independent contact
systems, to “contact symmetries” (seel®l). The symplectic counter-
parts of (infinitesimal) strict Hamiltonian symmetries are some-
times referred to as “(infinitesimal) Noether symmetries” (seel>’!
and references therein).

If a conserved quantity is known, (infinitesimal) dynamical
symmetries can be used to compute additional conserved quan-
tities. Similarly, if a dissipated quantity is known, (infinitesimal)
strict Hamiltonian symmetries can be used to compute new dis-
sipated quantities.

Proposition 3.19. Suppose that g € € (M) is a conserved quantity
and f € € (M) is a dissipated quantity.

(1) If®: M — M isastrict Hamiltonian symmetry and a dynami-
cal symmetry, thenf = f o ® = ®*f isalso a dissipated quantity.

(2) If Y € X(M) is an infinitesimal strict Hamiltonian symmetry
and an infinitesimal dynamical symmetry, thenf = Zyf isalso
a dissipated quantity.

(3) If®: M — M is a dynamical symmetry, then g = go ® = O*g
is also a conserved quantity.

(4) IfY € X(M) is an infinitesimal dynamical symmetry, then g =
Zyg is also a conserved quantity.

Proof. Let f and g be a dissipated and a conserved quantity,

respectively. Suppose that ® : M — M is an strict Hamiltonian
symmetry and a dynamical symmetry. Then,

gx,,f = ng(q)*f) = q)*<g¢*fo) = q)*(ngf)
= 0 (=% (Hf) = ~Z (H)f
Similarly, if @ is a dynamical symmetry, then
gx,,,g\ = 3)(“ (P*g) = @* (3)<1>*XHg) =0 (ngg) =0.
If Y € X(M) is an infinitesimal dynamical symmetry, then
Ly 8=Lx, Ly =L x, v8+ Ly, 8=0.

Finally, if Y € (M) is an infinitesimal strict Hamiltonian sym-
metry and an infinitesimal dynamical symmetry, we have that

ng =%y, (gyf) = g[XH,Y]f"_gY(gXHf)

= SY(—JRZ(H)f) = _gRZ(H)(ng) . O

The results from Proposition 3.19 cannot be extended to gen-
eralized infinitesimal dynamical symmetries. As a matter of fact,
we have the following counterexample.
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Example 3.20. Consider the same system as in Example 3.14. Let
Y € X(R* \ {0}) be the vector field Y = i. We have that [Y, X,,] # 0,

buty([Y, X,]) = O therefore, it is a generalized infinitesimal symmetry
but it is not a dynamical symmetry.

The function f (t, x, p, 2) = p is a dissipated quantity, but £ f =1
is not a dissipated quantity. Likewise, £ H = p is not a dissipated
quantity either. Finally,

H 1
Zy F=2

is not a conserved quantity.

z
—

. (3.14)

It is also worth mentioning that preserving the Hamiltonian is
nota sufficient condition for a diffeomorphism (vector field) to be
a (infinitesimal) dynamical symmetry. It is not a sufficient condi-
tion for being a generalized (infinitesimal) dynamical symmetry
either.

Example 3.21.  Consider the cocontact Hamiltonian system
(R*, 7,n, H), with t = dt, n = dz — pdx and

where (t, x, p, z) are the canonical coordinates in R*. Its Hamiltonian
vector field is given by

2
9 4 pd 0 (3.15)
2

XH=_+pa_+

9
ot x 0z’

Let Y = z0/0z. One can check that Y(H) = 0, but [Y,X,;] # 0 and
n([Y, X)) # 0. Similarly, @ : R* > R*, (t,x,p,2) — (t,%,p,22) isa

diffeomorphism preserving the Hamiltonian function H but not the
vector field X,;.

Furthermore, we can consider the following generalization of
infinitesimal p-conformal Hamiltonian symmetries.

Definition 3.22. Given a cocontact Hamiltonian system (M, 7, n, H),
a (p, g)-Cartan symmetry is a vector field Y € X(M) such that

Zym=pn+dg, ZLyH=pH+gR,(H), 1,7=0,

where p, g € €°(M).

Clearly, a p-conformal Hamiltonian symmetry is a (p, 0)-Cartan
symmetry. On the other hand, (0, g)-Cartan symmetries are the
analogous of Cartan symmetries in symplectic Hamiltonian sys-
tems (seel®8! for instance).

Theorem 3.23. If Y is a (p,g)-Cartan symmetry of a cocontact
Hamiltonian system (M, t,n, H), the function f = g — 1,1 is a dis-
sipated quantity.
Proof.
:ZXHf = “(ZXH (g—1yn) = lXHdg - ’nyH” ~ Ix, M
= 1y, dg + 1y (R.(H)n + Ry(H)7) + t1yx,1
=1y, dg + R, (H)iyn + R(H)1y7 + Lyiy n — 1, Lyn

= IXHdg + R,(H)iyn + R(H)iyt — LyH — 1y (pn + dg)
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= R.(H)iyn — pH = gR.(H) — piyn = —(g — 1x, n)R.(H)

= —R,(Hf . O

Proposition 3.24. IfY is a (p, g)-Cartan symmetry, then Z =Y —
gR, is a generalized infinitesimal dynamical symmetry.

Proof. Suppose that Y is a (p, g)-Cartan symmetry. Then, by
Theorem 3.23, the function f = g — iy is a dissipated quantity,
so, by Theorem 3.9, Z =X, — R, is a generalized infinitesimal
dynamical symmetry. The Hamiltonian vector field of f is given
by

b(X}) =dg —d(yn) - (ngg - ZLpiyn+g- ’Y”)”l

+ (1= ZLrg+ Ly iyn)t, (3.16)
but
Lr iy =gy + 1y Lrll = Uyl = —Uyr
= =Dy n+ig Lyn =15 Lyn (3.17)
=1RZ(P’I+dg) =p+Zyg, (3-18)

and, similarly, &y 1,1 = Z; g. In addition,

d(1yn) = ZLyn —1ydn = pn + dg —1ydy. (3.19)
Thus,

b(X;) = 1ydn — (g —1ym)n+7. (3.20)
On the other hand,

b(Y) = (tym)n + 1ydn, (3.21)

SO We can write

DX —Y)=—gn+7, (3.22)
that is,

X =Y—-gR, +R, (3.23)
soZ=Y-gR,. O

Remark 3.25. If Y is a (p, g)-Cartan symmetry and Z =Y —gR,
is its associated generalized infinitesimal dynamical symmetry,
then the dissipated quantities associated to Y and to Z via Theo-
rems 3.9 and 3.23 coincide.

Regarding the Lie algebra structures formed by the sets of sym-
metries, we have the following result:

Proposition 3.26 (Lie algebras of symmetries).

(1) Infinitesimal conformal Hamiltonian symmetries close a Lie sub-
algebra of (X(M), [-,]). More precisely, if Y, is a p,-conformal
Hamiltonian symmetry and Y, is a p,-conformal Hamiltonian
symmetry, then [Y, Z] is a p-conformal Hamiltonian symmetry,
where p =Y, (p,) = Yy(py)-

© 2023 The Authors. Fortschritte der Physik published by Wiley-VCH GmbH

85U8017 SUOWIWIOD BA 11810 3|l [dde ay) Aq pausenob ae sapoile VO ‘8sN JO Sa|n. 10} AfeldTauljUQ A1/ UO (SUONIPUCD-pUe-SWeIALI00" A | IMAle.q Ul Uo//Sdny) SUORIPUOD pue SWie 1 8y} 89S *[£202/0T/0T] Uo Afeiqauljuo A81IM ‘U0SIAIG epeueD aueIyo0D Ad 87000€Z02 do.d/Z00T 0T/10p/ioo A8 im Aleq i jpuluo//sdny Wwolj pepeojumod ‘6-8 ‘€202 ‘8.65TZST


http://www.advancedsciencenews.com
http://www.fp-journal.org

ADVANCED
SCIENCE NEWS

Fortschritte
der Physik

Progress
of Physics

www.advancedsciencenews.com

(2) Infinitesimal strict Hamiltonian symmetries close a Lie subalge-
bra from the Lie algebra of infinitesimal conformal Hamiltonian
symmetries.

Proof. If Y, is a (p;, g;)-Cartan symmetry (for i = 1, 2), then
3[3/@/2]11 = S/pn 3Y2’7 - 3Y23Y]’1

=$Y1(P2’1+dgz) -y, (pin+dg,) (3.24)

(gl)) + p,dg, + pidg,,
(3.25)

= (Yl(Pz) - Yz(Pl))"l + d(Yl(gZ) -Y,

so, in general, [Y;,Y,] is not a Cartan symmetry (see Exam-
ple 3.27). However, for g, = g, =0,

g[yl,yz]” = (Yl(Pz) - Yz(Pl))’l =pn. (3-26)
Moreover,
g[YI:YZ]H = gyl D%)YZH - gyzg}ﬁ H= 35’1 (pZH) - gyz (le)

= (Yi(p,) = V(o)) H, (3.27)

and hence [Y;,Y,] is an infinitesimal p-conformal Hamilto-
nian symmetry.

In particular, if Y; an Y, are infinitesimal strict Hamiltonian
symmetries, then p; = p, =0, so p' = 0 and thus [Y}, Y,] is an in-
finitesimal strict Hamiltonian symmetry. O

In general, Cartan symmetries do not close a Lie subalgebra.

Example 3.27.  Consider the cocontact Hamiltonian system
(R*, 7,n, H), with = = dt, n = dz — pdq and

H=¢17,
where (, g, p, z) are the canonical coordinates in R*. The vector field

Y1=‘J£

is a (0, q)-Cartan symmetry and

J d

Y, = (p—1) 2L _ g2z 2L

= —1e p ¢ 5
is a (e17%, 0)-Cartan symmetry. Their commutator is[Y, Y,] = —qY,,

and
Ly, vy = —q¢" " + ef*dg.

There is no function f € €= (R*) such that fn + e7=dq is exact, so
it is not possible to write L}y, v, ;n = pn + dg for any functions p, g €
E*(R*), and hence [Y,, Y,] is not a Cartan symmetry.

The types of symmetries and the relations between them are
summarized in Figure 1.
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4. Symmetries and Dissipated Quantities of
Cocontact Lagrangian Systems

Consider a regular cocontact Lagrangian system (R X TQ X R, L),
with cocontact structure (dt, #7;). Since (R X TQ X R, dt, ;,, E;)isa
cocontact Hamiltonian system, every result from Section 3 can be
applied to this case. Moreover, making use of the geometric struc-
tures of the tangent bundlel®">! (and their natural extensions to
R x TQ x R) we can consider additional types of symmetries. A
summary of these symmetries and their relations can be found
in Figure 2. The relation between (extended) natural symmetries
of the Lagrangian and Hamiltonian symmetries is depicted in
Figure 3.

Consider a diffeomorphism ¢ = (¢4, ,) : Q XR - Q X R,
where ¢, : Q - Q and @, : R — R are diffeomorphisms (in an
abuse of notation we omit the projections). Then, the action-
dependent lift of ¢ is the diffeomorphism @ = (idg, Tey, @,) : R X
TOXR - RxTQ x R.Avectorfield Y € X(Q x R)is splitifitis
projectable by pr, : Q xR — Q and by pry : Q xR — R. Given
a split vector field Y € X(Q X R), its action-dependent lift is the
vector field Y¢ € (R x TQ X R) whose local flow is the action-
dependent lift of the local flow of Y. In other words, if Y is locally
of the form

d 0

Y= Y‘(q)a—qi +@)o- (+.1)

its action-dependent complete lift is the vector field given locally by

SC ;0 0Y' 0 0
V=Yg v @)

Given a function f € €*(Q), its vertical lift is the function fV =
forgor, € E*(RXTQXR), where 7507, :RXTQXR - Q
is the projection (see Section 2.4). A 1-form w € Q'(Q) can be
regarded as a function ® € €*(TQ). Locally, if o = w,(q)dq’, then
® = w,(q)v'. The vertical lift of a vector field X € £(Q) to TQ is
the unique vector field XV € X(TQ) such that XV (@) = (0(X))¥
for any w € Q'(Q). The vertical lift of an split Y € X(Q X R) to
R X TQ X R is the vector field YV € Z(R x TQ x R) given by the
vertical lift of Tpr, Y € X(Q) to TQ. Locally, if Y has the local
expression (4.1), its vertical lift reads

Y= Yi(q)% .

The following properties hold for any X, Y € 2(Q X R):
X, Al=0, SX9=X", SXx")=o0,

FwS =0, Z3S=0, (4.2)

where S and A denote the vertical endomorphism and the Liou-
ville vector field, with local expressions (2.11).

4.1. Lagrangian Symmetries

We will denote ¢’ = d_¢ Henceforth, all the Lagrangian systems

are assumed to be regular.
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Definition 4.1. A diffeomorphism @ : R XTQ XR - RxTQ X R
of the form

@ (tqv,2) > (1D,(Lq V), Dt qv), D, (2)

is called an extended symmetry of the Lagrangian if ®*L = ®L. In

addition, if @ is the action-dependent lift of some ¢ € Diff (Q X R),

then it is called an extended natural symmetry of the Lagrangian.
Avector field Y € (R x TQ X R) of the form

+B(g ) +{(2)

i 0
Y =A'(t,q,v) > Fw

o

is called an infinitesimal extended symmetry of the Lagrangian if
ZyL={¢'L. In addition, if Y is the action-dependent complete lift of
some X € X(Q X R), then it is called an infinitesimal extended nat-
ural symmetry of the Lagrangian.

Proposition 4.2. An (infinitesimal) extended natural symmetry
Y€ of the Lagrangian L is an (infinitesimal) @' -conformal (¢'-
conformal) Hamiltonian symmetry of the cocontact Hamiltonian sys-
tem (M, 7, n;, E;).
Proof. Clearly, i5ct = 0. Moreover,
ZycEp = Lyc(A(L) = Zye(L) = (A = 1)(Zye(L)
=(A-1)¢'L)=¢"E,,

where we have used that the action-dependent complete lift of a
vector field commutes with the Liouville vector field (see proper-
ties (4.2)), and

Lyen, = Lye(dz—'Sodl) =df - Sod(Zycl)
=¢'dz—"So (LdS +¢'dL) =¢'(dz—"SodL) =¢'n, .

Therefore, Y€ is a ¢’-conformal Hamiltonian symmetry. The
case for extended natural symmetries of the Lagrangian is
similar. O

Proposition 4.3. Let Y = Y¥(q)d/0q + ¢(2)9/0z be an split vector
field on Q X R. Then Y€ is an infinitesimal extended natural sym-
metry of Lif, and only if, YV (L) — ¢ is a dissipated quantity.

Proof. We have that
n(Y6) = (dz - 'SodL)(YS) = ¢ - YV(I),
where we have used the second of the properties (4.2), so
L (YD) = &) + L (E)(YV(D) - ©)

==, 1yl — Iyc (RE(EL)’IL)

= = tyeny + 1ye (Lr i + RUEDT) = =i ye -

If T, is the Herglotz—Euler—Lagrange vector field (given by Equa-
tions (2.15)),

Lyer ML

= Zycir ny — ip, Lyen, = —Lyc By — i, Lyc(dz - 'SodL)
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= —A(Lycl) + LycL —ip Lyedz+ 1 'S od(Lyel)
= gvycL - lrLgych = g}'/cL - lI-LdC = gycL - QFLC,

where 1, 'S = A because I'; is a sopE. Thus, YV(L) - ¢ is a dissi-
pated quantity if and only if Z;cL — Z;. { vanishes. O

A particular case of extended natural symmetries are those
with ¢ = 0. That is, symmetries which are lifted from Q.

Definition 4.4. A diffeomorphism ® € Diff (R X TQ X R) is called
a symmetry of the Lagrangian if ®*L = L and ®*t = t. In addition, if
@ is the canonical lift of some @ € Dift (Q), then it is called a natural
symmetry of the Lagrangian.

A vector field Y € X(R X TQ X R) is called an infinitesimal sym-
metry of the Lagrangian if &y L = 0 and 1y7 = 0. In addition, if Y is
the complete lift of some X € X(Q), then it is called an infinitesimal
natural symmetry of the Lagrangian.

From Proposition 4.2, we have the following.

Corollary 4.5. Every (infinitesimal) natural symmetry of the La-
grangian L is an (infinitesimal) strict Hamiltonian symmetry of
(RxTQ X R,dt, 5, E)).

It is worth noting that a symmetry of the Lagrangian which
is not natural is not, in general, a Hamiltonian symmetry. More-
over, in general, it is not an extended symmetry of the Lagrangian
either.

Example 4.6. Consider the Lagrangian L(t, x, v, z) = %vz - V(t, x,2)
on R x TR x R. Clearly, the vector field
_, 0,V

ox  0x Ov
is an infinitesimal symmetry of the Lagrangian (but it is not natural).
However, Y(E;) # 0. Moreover, we have 1, = dz — vdx, so

Y

ov
Lyn, = —adx —vdv # pn;,

forany p € C* (M)
From Proposition 4.3 we have that:

Corollary 4.7. Let Y be a vector field on Q and assume that L is
regular. Then YC is an infinitesimal natural symmetry of L if, and
only if, YV(L) is a dissipated quantity.

Example 4.8 (Cyclic coordinate). Suppose that L has a cyclic coor-
dinate, namely 0L/oq' = 0 for some i € {1,...,n}. Then, YC is an
infinitesimal natural Lagrangian symmetry, where Y = 0/dq', and
its associated dissipated quantity is the corresponding momentum
OL/ov'.

Proposition 4.9. Infinitesimal symmetries of the Lagrangian, in-
finitesimal natural symmetries of the Lagrangian and infinitesimal
extended natural symmetries of the Lagrangian close Lie subalgebras
of R XTQXR),[-, ).

Proof. 1fY,,Y, € (R xTQ X R) are symmetries of the La-
grangian L, then

Ly, v L= %y, Zy,|L=0, (4.3)

Uy, v, T = 0, (4.4)
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so [Y;, Y,] is a symmetry of the Lagrangian. In particular, if Y; =
Xfand Y, = X; (forsome X;, X, € ¥(Q)) are natural symmetries
of the Lagrangian, then [Y;, Y,] = [X;, X;]€. Therefore, [Y;, Y,] is
also a natural symmetry of the Lagrangian.

Similarly, suppose that Y and Y{ are extended natural sym-
metries of the Lagrangian L, where

Y, = Vi) )2

- a=1,2.
aq

Then,

" " d ! !
Fisesal= | Lo Ze| L= (68 - 08)) L= £ (68 - GE)L,

but
D ) GRS P
i 2 i 1
[V, Y] = <Yla_qi - Yza_qi)a_qi + (68 - Cz(l')E;
so [YF, Y{]is an extended natural symmetry of L. O

4.2. Symmetries of the Action

Another relevant class of symmetry are transformations on the

“

z” variable, or changes of action, which preserve the dynamics.
This kind of transformations are used inl®!! to generate equiva-
lent Lagrangians.

Definition 4.10. A diffeomorphism ® : RXTQ X R - R X TQ X
R is a change of action if, for any section y of the projection pry, g
RXxTQXR - RxXTQ, we have

Plpyrg © Poy = Idpyrg -

A vector field Z € (R x TQ X R) an infinitesimal change of action
if TPy 0 Z = 0.
If a change of action has the form

D (g vz~ (Lgvd,(Lqv2),

0P
then, in particular —=

# 0 everywhere.

Clearly, the flow of an infinitesimal change of action is made
up of changes of action. Moreover, if Y € (R X Q X R) is a soDE
and @ is a change of action, then @, Y is also a sobE.

Proposition 4.11. A change of action ® :RXTQ XR — R X
TQ X R of the form

O:(tqgvz)— (Land,(qnz),
is a generalized dynamical symmetry if, and only if, T (®,) = Lo ®.

An infinitesimal change of action Z € X(R x TQ X R) with local
expression

0
Z= C(t,q,v,z)a—z

is a generalized infinitesimal dynamical symmetry if, and only if, { is
a dissipated quantity, i.e., ['[ () = {0L/oz.

Fortschr. Phys. 2023, 71, 2300048 2300048 (13 of 17)
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Proof. Given two sopE Y and X, we have that 0, (Y) = 0,(X) =
A(L) and 'S(Y) = A. Let I'; be the Herglotz—Euler—Lagrange vec-
tor field of the system, given by Equations (2.15). If ® is a change
of action, then

; 0

oI =12

i 0 i 0 0
2 (FV o)L 4 (I (@)oo !) L.
Thiag U )5 + (i@ 00™) 2

In addition,
lor, M =T (@) 0@ =0, (T}) =Ty (®,) 0 @' = A(L).

Onthe other hand, iy n; = —E; = L — A(L). Therefore, @ is a gen-
eralized dynamical symmetry (i.e., 1o r 7 = 1y ) if, and only if,
ry(@.)=Lod.

Furthermore, if Z is an infinitesimal change of action we have
that

Ur, zfM = Zrizny — 122 n = T(l) + ’z(Rﬁ(EL)’?L + R (E})7)
(4.5)

=T () + RU(E)L. (4.6)
And the result is proved using the identity dL/dz = —RL(E})) O

This result motivates the following definition.

Definition 4.12. A diffeomorphism @ : R X TQ X R —» R X TQ X
R of the form

D:(t,qv2) (t, v P,(tq v z))

is an action symmetry if [ (®,) = Lo ®.
A vector field Z € £(TQ x R) of the form Z = {(t,q,v,2)0/0z is
an infinitesimal action symmetry if { is a dissipated quantity.

5. Examples

We compute several examples to illustrate in practice some of
the concepts presented previously. We also show how symmetries
and dissipated quantities can be used to study the dynamics of the
2-body problem with time-dependent friction.

5.1. The Free Particle with Time-Dependent Mass and Linear
Dissipation

Consider the cocontact Hamiltonian system (R xT*R x

R,dt,n, H), with natural coordinates (t,q,p,2) where
n = dz — pdq is the contact form and
2
H=-"Lt_4+ X (5.1)
2m(t)  m()

is the Hamiltonian function, with m a positive-valued function
depending only on t, expressing the mass of the particle, and k a
positive constant. The Hamiltonian vector field of H is

_9, P o k9 (P & \o
S5 T mmog P m(t)ap+<2m(t) M(t)z>92'
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Its integral curves are given by

p

rp= —Zim , (5.2)
= P R,
2m(ty  mp)”
which yield

exp /“—mk—)ds P
aty = J 22U - e

Jp0 =P (% —ﬁdS) :

¢ exp (/ ng s )Po

() = exp (Jy ~5dv) ff T
+2z, €xp (/0 ——dv)

m(v)

du+gq,,

where g, = q(0), p, = p(0), z, = z(0) are the initial conditions.
The term of H linear in the variable z permits to model a damp-
ing phenomena. As a matter of fact, in the particular case where
m(t) is constant the linear momenta (and hence the velocity) of
the system decreases exponentially.

The function f (t, g, p, 2) = exp(— fo —ds is a dissipated quan-

tity. Hence, by Theorem 3.9, the vector ﬁeld
bk J
=—exp|— / ——ds | =
o m(s) 0z
s
=—exp|—/ ——ds|R, 5.4
(- 7e) .

is a generalized infinitesimal dynamical symmetry. In addition,
one can verify that Y; is an infinitesimal dynamical symmetry,
namely Y; commutes with X;;. Now,

Y/ (H) = —exp (—/0 %m) R,(H), (5.5)

and

$Yf11 = d(— exp (—/0 %ds)wn)
'k
= —d(exp <—/0 %ds>> , (5.6)

so Yy is a (0, g)-Cartan symmetry, where g = —exp(— /0

Y =X R

(5)
Moreover, f,(t, q,p,z) = p is also a dissipated quantity, whose

associated generalized infinitesimal dynamical symmetry is

Itis clear that Y} is an infinitesimal dynamical symmetry,ie., Y,
commutes with X;;. Moreover, Zyn=0 and Y, (H) = 0,s0 Y} is
2

an infinitesimal strict Hamiltonian symmetry.
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The Lagrangian counterpart of this system is characterized by
the Lagrangian function L : R X TR X R — R given by

iz K

The vector field Z € (R x TR X R) with local expression

_ 9 (- [ Egs) L
Z—{(t,q,v,z)az—exp( ,/Om(s)ds>6z (5-8)

is an infinitesimal action symmetry, since it is an infinitesimal
change of action and we know that ¢ is a dissipated quantity.

5.2. An Action-Dependent Central Potential with
Time-Dependent Mass

Consider a Lagrangian function L: RXTR?xR — R of the
form

Lt xyv,,v),2) =

mz(t) (vi + vi) - V(t (¥ +y).2), (5.9)

where m(t) is a positive-valued function. Let Y € X¥(R?) be in-
finitesimal generator of rotations on the plane, namely,

0 0
Y= —y— . 5.10
Y6x+xdy (5.10)

Its complete lift is given by

S J J d
Y= —9yp—+x——v,— +v,—, 5.11
Yax dy VYav anvy G-11)

and its vertical lift is
YV = —yi +x

ov, avy

(5.12)

Clearly, Y€ is an infinitesimal natural symmetry of the La-
grangian, i.e., Y¢(L) = 0. Hence, by Corollary 4.7,

YY(L) = m(t)(—yv, +xv,)

is a dissipated quantity. This quantity is the angular momentum
for a particle with time-dependent mass.

5.3. The Two-body Problem with Time-Dependent Friction

The two-body problem describes the dynamics of two particles
under the effects of a force that depends on the distance be-
tween the particles, usually the gravitational force. To model time-
dependent friction, we will add a linear term on the action in
the Lagrangian, with a time-dependent coefficient. The two-body
problem is one of the most important problems in celestial me-
chanics. The addition of a friction term may allow to describe the
motion of celestial bodies in a dissipative medium.

The phase space is RXTR®XR, with coordinates
(t.q',¢*,v',v*,z). The superindex denotes each particle, and
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the bold notation is a shorthand for the three spatial compo-
nents, namely q' = (q},4},4;) and ¢* = (4}, 45, 43). The relative
distance between the particles is r = ¢* — q!, whose (Euclidean)
length will be denoted r = |r|.

The Lagrangian function is

L= %mlvl v+ %mzv2 V= U(r) —y(t)z,
where m,, m, € R are the masses of the particles which we as-
sume to be constant, U(r) is the central potential and y is a time-
dependent function. The Lagrangian energy is

E = %mlvl v+ %mzv2 W+ U +y(h)z,

and the cocontact structure is given by the one-forms

n=dz-mpy'-dq' —my?-dg*, 7=dt.

The evolution of the system is given by the Herglotz—Euler—
Lagrange vector field I';, defined by Equations (2.15) and with
local expression (2.16). Its solutions satisfy the Herglotz—Euler—
Lagrange equations:

mp' = F —y(ymv', (5.13)
m,»* = —F — y(t)m,»* . (5.14)
The dot notation indicates time derivative and F = —i—gf is the

force of the potential U.
Proceeding as in the classical two-body problem, we study the
evolution of the center of masses

1 2
m,q- +m
R 19 29 .
m;+m,

Since I'; is a soDE, we have that

1 2
mv' + m,v

I(R)= ———2— =R,
L m, +m,

and

I, (R) = —yR.

That is, every component of R is a dissipated quantity. Along a
solution, it evolves as

R(t) = Rye™ /70

In particular, if y is a positive constant, as the time increases the
center of mass tends to move on a line with constant speed R,. By
Noether’s Theorem 3.9, the corresponding generalized infinites-
imal dynamical symmetries are Yj = X;, — R, where Rl is sub-
tracted to every component. A short computation shows that

1 0 7}
Yo=— (2 +2).
K m; +m, (aql 0q2>
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Each component of Yj is an action dependent complete lift and
Zy,L = O therefore, they are infinitesimal natural symmetries of
the Lagrangian.

The fact that the center of mass is moving in a very concrete
way, may indicate that one could express the system using only
the relative position. Indeed, from Equations (5.13) and (5.14)
one derives

uir = —F —yput,

mm
1", . - :
——— is the reduced mass. This equation can also

where y =
m, +m,
be derived from the Lagrangian L, = % ut - — U(r) — yz. The an-

gular momentum is

L=purxi.

Each component is a dissipated quantity:
Iy = L.

The angular momentum along a solution is
L(t) = Lye~ /704

Since the direction of L remains constant, the movement takes
place on a plane perpendicular to L. If y is a positive constant,
the angular momentum tends to 0. The associated generalized
infinitesimal dynamical symmetries are

Each component of Y, is an action-dependent complete lift and
Zy,L = 0, therefore they are infinitesimal natural symmetries of
the Lagrangian.

Finally, the Lagrangian energy E; evolves as

I (E)= _Ri(EL)EL + RtL(EL) =-yE +7z,

and it is not a dissipated quantity due to the time-dependence of
7.

The evolution of the mechanical energy, namely the sum of the
kinetic and the potential energies,

Epee = lmlvl v+ %mzv2 v+ U(r)

mec 2
is given by

I'L(E

1 1 2 2
med) = =7 (B (my' v+ myy? ).
We could proceed by rewriting the reduced system in polar co-
ordinates and describe the possible orbits. Unfortunately, in this
case it is not evident how to express the relation between the ra-
dial and angular coordinates.
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6. Conclusions and Further Research

In this article, we have characterized the symmetries and dissi-
pated quantities of time-dependent contact Hamiltonian and La-
grangian systems. Firstly, we have studied generalized infinites-
imal dynamical symmetries, a type of symmetries which are in
bijection with dissipated quantities. After that, we have consid-
ered other types of symmetries which preserve (up to a con-
formal factor) additional objects, such as the cocontact struc-
ture or the Hamiltonian function. Moreover, making use of
the canonical structures of the tangent bundle, we have dis-
cussed Lagrangian symmetries and symmetries of the action. We
have concluded with three illustrative examples: the free parti-
cle with time-dependent mass and linear dissipation, the action-
dependent central potential with time-dependent mass, and the
two-body problem with time-dependent friction.

In particular, the two-body problem could be interesting in ce-
lestial mechanics, where the friction could be used to model the
damping caused by the medium. The formalism presented in
this article may also be applied to more complex systems in celes-
tial mechanics. In a future work, we plan to extend this study to
the restricted three-body problem with friction. It would be par-
ticularly interesting to study how the friction affects the stability
of the system.

The study of symmetries and dissipated quantities made in
this work is the first step towards investigating the symmetries
and dissipation laws in non-conservative field theories using the
k-(co)contact!?21:601 and multicontact!®'! settings. Furthermore,
the classification of symmetries could provide a new insight to-
wards a reduction method for time-(in)dependent contact sys-
tems.
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